Numerical Schemes for Conservation Laws via Hamilton - Jacobi Equations

نویسنده

  • R. NATALINI
چکیده

We present some difference approximation schemes which converge to the entropy solution of a scalar conservation law having a convex flux. The numerical methods described here take their origin from approximation schemes for Hamilton-Jacobi-Bellman equations related to optimal control problems and exhibit several interesting features: the convergence result still holds for quite arbitrary time steps, the main assumption for convergence can be interpreted as a discrete analogue of Oleinik's entropy condition, numerical diffusion around the shocks is very limited. Some tests are included in order to compare the performances of these methods with other classical methods (Godunov, TVD).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex ENO Schemes for Hamilton-Jacobi Equations

In one dimension, viscosity solutions of Hamilton-Jacobi (HJ) equations can be thought as primitives of entropy solutions for conservation laws. Based on this idea, both theoretical and numerical concepts used for conservation laws can be passed to HJ equations even in multi dimensions. In this paper, we construct convex ENO (CENO) schemes for HJ equations. This construction is a generalization...

متن کامل

A Priori Error Estimates for Semi-discrete Discontinuous Galerkin Methods Solving Nonlinear Hamilton-jacobi Equations with Smooth Solutions

The Hamiltonian H is assumed to be a smooth function of all the arguments. When there is no ambiguity, we also take the concise notation H(φx) = H(φx, x) and H(φx, φy) = H(φx, φy, x, y). The DG method is a class of finite element methods using completely discontinuous piecewise polynomial space for the numerical solution in the spatial variables. It can be discretized in time by the explicit an...

متن کامل

Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations

We introduce new Godunov-type semidiscrete central schemes for hyperbolic systems of conservation laws and Hamilton–Jacobi equations. The schemes are based on the use of more precise information about the local speeds of propagation and can be viewed as a generalization of the schemes from [A. Kurganov and E. Tadmor, J. Comput. Phys., 160 (2000), pp. 241–282; A. Kurganov and D. Levy, SIAM J. Sc...

متن کامل

Alternating Evolution Schemes for Hamilton-Jacobi Equations

In this work, we propose a high-resolution alternating evolution (AE) scheme to solve Hamilton–Jacobi equations. The construction of the AE scheme is based on an alternating evolution system of the Hamilton–Jacobi equation, following the idea previously developed for hyperbolic conservation laws. A semidiscrete scheme derives directly from a sampling of this system on alternating grids. Higher ...

متن کامل

High order relaxed schemes for nonlinear reaction diffusion problems

Different relaxation approximations to partial differential equations, including conservation laws, Hamilton-Jacobi equations, convection-diffusion problems, gas dynamics problems, have been recently proposed. The present paper focuses onto diffusive relaxed schemes for the numerical approximation of nonlinear reaction diffusion equations. High order methods are obtained by coupling ENO and WEN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010